85 research outputs found

    Numerical computation of viscous flows on the lee side of blunt shapes flying at supersonic speeds

    Get PDF
    A numerical method for solving the parabolic approximation to the steady-state compressible Navier-Stokes equations is examined. The approximation neglects only the streamwise gradients of shear stress. An implicit finite difference method is used which advances the solution downstream from an initial data surface and determines the complete viscous-inviscid flow between the body and bow shock wave. It is necessary that the inviscid portion of the flow field be supersonic. Crossflow separation is determined as part of the solution. The method is applied to a 15 deg sphere-cone at 15 deg angle of attack, and the results are compared with an inviscid method-of-characteristics calculation

    Catalytic surface effects on space thermal protection system during Earth entry of flights STS-2 through STS-5

    Get PDF
    An on going orbiter experiment catalytic surface effects experiment being conducted on the Space Shuttle is discussed. The catalytic surface effects experiment was peformed on four of the five flights of Columbia. Temperature time histories and distributions along the midfuselage and wing of the orbiter were used to determine the surface catalytic efficiency of the baseline high temperature reusable surface insulation. Correlation parameters are shown that allow the comparison of all flight data with predictions from the design and surface emittance decreased as a result of contaminants during the five flights of the Space Shuttle

    Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges

    Get PDF
    Two complementary procedures were developed to calculate the viscous supersonic flow over conical shapes at large angles of attack, with application to cones and delta wings. In the first approach the flow is assumed to be conical and the governing equations are solved at a given Reynolds number with a time-marching explicit finite-difference algorithm. In the second method the parabolized Navier-Stokes equations are solved with a space-marching implicit noniterative finite-difference algorithm. This latter approach is not restricted to conical shapes and provides a large improvement in computational efficiency over published methods. Results from the two procedures agree very well with each other and with available experimental data

    Simulation of large turbulent structures with the parabolic Navier-Stokes equations

    Get PDF
    The theoretical basis for well posed marching of a Parabolic Navier-Stokes (PNS) computational technique for supersonic flow is discussed and examples given to verify the analysis. It is demonstrated that stable computations can be made even with very small steps in the marching direction. The method is applied to cones at large angle of attack in high Reynolds number, supersonic flow. Streamline trajectories generated from the numerical solutions demonstrate the development of vortex structures on the lee side of the cone

    High contrast at short separation with VLTI/GRAVITY: Bringing Gaia companions to light

    Full text link
    Since 2019, GRAVITY has provided direct observations of giant planets and brown dwarfs at separations of down to 95 mas from the host star. Some of these observations have provided the first direct confirmation of companions previously detected by indirect techniques (astrometry and radial velocities). We want to improve the observing strategy and data reduction in order to lower the inner working angle of GRAVITY in dual-field on-axis mode. We also want to determine the current limitations of the instrument when observing faint companions with separations in the 30-150 mas range. To improve the inner working angle, we propose a fiber off-pointing strategy during the observations to maximize the ratio of companion-light-to-star-light coupling in the science fiber. We also tested a lower-order model for speckles to decouple the companion light from the star light. We then evaluated the detection limits of GRAVITY using planet injection and retrieval in representative archival data. We compare our results to theoretical expectations. We validate our observing and data-reduction strategy with on-sky observations; first in the context of brown dwarf follow-up on the auxiliary telescopes with HD 984 B, and second with the first confirmation of a substellar candidate around the star Gaia DR3 2728129004119806464. With synthetic companion injection, we demonstrate that the instrument can detect companions down to a contrast of 8×10−48\times 10^{-4} (ΔK=7.7\Delta \mathrm{K}= 7.7 mag) at a separation of 35 mas, and a contrast of 3×10−53\times 10^{-5} (ΔK=11\Delta \mathrm{K}= 11 mag) at 100 mas from a bright primary (K<6.5), for 30 min exposure time. With its inner working angle and astrometric precision, GRAVITY has a unique reach in direct observation parameter space. This study demonstrates the promising synergies between GRAVITY and Gaia for the confirmation and characterization of substellar companions.Comment: 16 pages, 14 figures. Submitted to A&

    Thermographic Investigations of Temperatures and Heat Fluxes in Hypersonic Large-Scale Plasma Flow

    No full text

    Recent Developments on Time-Dependent Calculation of Nonequilibrium Flows

    No full text
    • …
    corecore