422 research outputs found

    Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China

    Get PDF
    We report dozens of direct radiocarbon dates on charred grains from 22 archaeological sites of the Neolithic and Bronze Ages in the Hexi Corridor, northwest China, a key region for trans-Eurasian exchange in prehistoric and historical times. These charred grains include remains of wheat and barley domesticated in southwest Asia and broomcorn and foxtail millet which originated from north China. Together with previously published radiocarbon dates, we consider these newly obtained radiocarbon results in the context of material cultures associated with them, to explore an episode of trans-continental cultural exchange foci at the Hexi Corridor. Our results show that millet cultivators who used painted potteries from the western Loess Plateau first settled the Hexi Corridor around 4800 BP. Communities who cultivated wheat and barley moved into this region from the west around 4000 BP, bringing with them technologies and materials not seen in central China before, including bronze metallurgy, mud bricks, and mace heads. This was part of the east-west contact which became evident in the Hexi Corridor since the late fifth millennium BP, and continued over the subsequent two millennia, and predated the formation of the overland Silk Road in the Han Dynasty (202 BC-AD 220)

    Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China

    Get PDF
    Knowledge of natural long-term drought variability is essential for water resource management and planning, especially in arid and sub-arid regions of the world. In the eastern Qilian Mountains of China, long-term drought variability based on high-resolution proxy records such as tree-ring data are still scarce to date. Here we present a new tree-ring chronology from the eastern Qilian Mountains which provides a valuable 1,002-year record (1009–2010 CE) of drought variability. The new reconstruction of June–July 5-month scale standardized precipitation and evapotranspiration index is the first millennium tree-ring estimate of past climate developed in the eastern Qilian Mountains. The record shows that this region has experienced several persistent droughts and pluvials over the past millennium, with significantly drier climate during the fifteenth century and dramatic wetting since the nineteenth century. The low frequency generally agrees with other nearby studies based on both tree-ring data and other proxy data

    Variations in Stable Carbon Isotope Composition and Leaf Traits of Picea schrenkiana

    Get PDF
    To understand the morphological and physiological responses of leaves to changes in altitudinal gradients, we examined ten morphological and physiological characteristics in one-year-old needles of Picea schrenkiana var. tianschanica at ten points along an altitudinal gradient from 1420 to 2300 m a.s.l. on the northern slopes of the Tianshan Mountains in northwest China. Our results indicated that LA, SD, LPC, and LKC increased linearly with increasing elevation, whereas leaf δ13C, LNC, Chla + b, LDMC, LMA, and Narea varied nonlinearly with changes in altitude. With elevation below 2100 m, LNC, Narea, and Chla + b increased, while LDMC and LMA decreased with increasing altitude. When altitude was above 2100 m, these properties showed the opposite patterns. Leaf δ13C was positively correlated with Narea and LNC and negatively correlated with SD and LA, suggesting that leaf δ13C was indirectly controlled by physiological and morphological adjustments along altitudinal gradients. Based on the observed maximum values in LNC, Narea, Chla + b, and LA and the minimum values in LMA and LDMC at the elevation of 2100 m, suggesting higher photosynthetic capacity and greater potential for fast growth under superior optimum zone, we concluded that the best growing elevation for P. schrenkiana var. tianschanica in the Tianshan Mountains was approximately 2100 m

    Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years

    Get PDF
    Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia

    Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau

    Get PDF
    A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau

    Human activities have reduced plant diversity in eastern China over the last two millennia

    Get PDF
    Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50% to ca. 80% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south–north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period
    corecore