194 research outputs found

    Human-centric light sensing and estimation from RGBD images: the invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    Environmental Noise and Nonlinear Relaxation in Biological Systems

    Get PDF
    We analyse the effects of environmental noise in three different biological systems: (i) mating behaviour of individuals of \emph{Nezara viridula} (L.) (Heteroptera Pentatomidae); (ii) polymer translocation in crowded solution; (iii) an ecosystem described by a Verhulst model with a multiplicative L\'{e}vy noise.Comment: 32 pages; In "Ecological Modeling" by Ed. Wen-Jun Zhang. ISBN: 978-1-61324-567-5. - Nova Science Publishers, New York, 201

    Effects of a localized beam on the dynamics of excitable cavity solitons

    Get PDF
    We study the dynamical behavior of dissipative solitons in an optical cavity filled with a Kerr medium when a localized beam is applied on top of the homogeneous pumping. In particular, we report on the excitability regime that cavity solitons exhibits which is emergent property since the system is not locally excitable. The resulting scenario differs in an important way from the case of a purely homogeneous pump and now two different excitable regimes, both Class I, are shown. The whole scenario is presented and discussed, showing that it is organized by three codimension-2 points. Moreover, the localized beam can be used to control important features, such as the excitable threshold, improving the possibilities for the experimental observation of this phenomenon.Comment: 9 Pages, 12 figure

    iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy

    Full text link
    We present ground-based and \textit{Swift} observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The lightcurve of the object peaked at absolute Mg=17.2M_g=-17.2 mag. The maximum bolometric luminosity (from optical and UV) was Lp  (1.0±0.15)×1043L_p~\simeq~(1.0\,\pm\,0.15) \times 10^{43} erg/s, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with Le(tt0)/τL \propto e^{-(t-t_0)/\tau}, where t0t_0=~57631.0 (MJD) and τ15\tau\simeq 15 days. The X-ray shows a marginal detection at LX=2.41.11.9×1039L_X=2.4^{1.9}_{-1.1}\times 10^{39} erg/s (\textit{Swift} X-ray Telescope). No radio counterpart was detected down to 3σ\sigma, providing upper limits for monochromatic radio luminosity of νLν<2.3×1036\nu L_{\nu} < 2.3\times10^{36} erg/s and νLν<1.7×1037\nu L_{\nu}<1.7\times 10^{37} erg/s (VLA, 6.1 and 22 GHz). The blackbody temperature, obtained from combined \textit{Swift} UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and Hα\alpha emission lines, with an FWHM of about 14,000 km/s and 10,000 km/s respectively. He I lines are also detected at λλ\lambda\lambda 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of \sim650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low luminosity events may have gone unnoticed in previous searches.Comment: 14 pages, 11 figures, accepted for publication in Ap

    A SO2 flux study of the Etna volcano 2020–2021 paroxysmal sequences

    Get PDF
    The persistent open-vent degassing of Mt. Etna is often punctuated by months-long paroxysmal sequences characterized by episodes of violent Strombolian to lava fountaining activity. Understanding these gas-fueled transitions from quiescence to eruption requires routine measurement of gas fluxes. Here, we report SO2 flux measurements, obtained from a permanent UV camera system, collected over a two-year-long period spanning two paroxysmal sequences of Etna’s New South East Crater (NSEC) in December 2020/April 2021 and May/October 2021. In both cases, SO2 flux increased from ≤ 3250&nbsp;Mg/day during “ordinary” activity to ≥ 4200&nbsp;Mg/day. We interpret these distinct SO2 degassing regimes in light of seismic and thermal observations and drawing on numerical simulations of sulfur degassing constrained by parental melt sulfur contents in Etna’s hawaiites. We find that initiation of a paroxysmal sequence results from an approximate doubling of the time-averaged rate of magma supply (and degassing) above the sulfur exsolution level (∼150&nbsp;MPa pressure), to &gt;4&nbsp;m3/s. This corroborates recent models that argue for the triggering of paroxysmal sequences by escalating supply of volatile-rich magma to a reservoir ∼3–4&nbsp;km below the summit region. The non-stationary nature of magma flow and volcanic degassing we identify highlights the need for sustained surveillance to characterize long-term atmospheric budgets of volcanic volatiles

    iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy

    Get PDF
    We present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute mag M_g =- 17.2. The maximum bolometric luminosity (from optical and UV) was L_p ≃ (1.0 ± 0.15) x 10^(43) erg s^(−1), an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with L ∝ e^(-(t-t_0)/τ, where t_0 = 57631.0 (MJD) and τ ≃ 15 days. The X-ray shows a marginal detection at L_X = 2.4_(-1.1)^(1.9) x 10^(39) erg s^(−1) (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of vL_v < 2.3 x 10^(36) erg s^(−1) and vL_v < 1.7 x 10^(37) erg s^(−1) (Very Large Array, 6.1 and 22 GHz). The blackbody temperature, obtained from combined Swift UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He ii and Hα emission lines, with FWHMs of about 14,000 km s^(−1) and 10,000 km s^(−1), respectively. He i lines are also detected at λλ 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of ~650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low-luminosity events may have gone unnoticed in previous searches
    corecore