188 research outputs found

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2nβˆ’4nβˆ’2)β‰ˆ4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)βŠ‚P(n2)βˆ’1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2nβˆ’42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2nβˆ’4nβˆ’2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2nβˆ’3nβˆ’2(nβˆ’6nβˆ’3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    Natural realizations of sparsity matroids

    Get PDF
    A hypergraph G with n vertices and m hyperedges with d endpoints each is (k,l)-sparse if for all sub-hypergraphs G' on n' vertices and m' edges, m'\le kn'-l. For integers k and l satisfying 0\le l\le dk-1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k,l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.Comment: Corrected some typos from the previous version; to appear in Ars Mathematica Contemporane

    Slider-pinning Rigidity: a Maxwell-Laman-type Theorem

    Get PDF
    We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley's direction networks.Comment: Accepted, to appear in Discrete and Computational Geometr

    Geometric auxetics

    Get PDF
    We formulate a mathematical theory of auxetic behavior based on one-parameter deformations of periodic frameworks. Our approach is purely geometric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its usefulness by predicting or recognizing, without experiment, computer simulations or numerical approximations, the auxetic capabilities of several well-known structures available in the literature. We propose new principles of auxetic design and rely on the stronger notion of expansive behavior to provide an infinite supply of planar auxetic mechanisms and several new three-dimensional structures

    Expansive periodic mechanisms

    Get PDF
    A one-parameter deformation of a periodic bar-and-joint framework is expansive when all distances between joints increase or stay the same. In dimension two, expansive behavior can be fully explained through our theory of periodic pseudo-triangulations. However, higher dimensions present new challenges. In this paper we study a number of periodic frameworks with expansive capabilities in dimension dβ‰₯3d\geq 3 and register both similarities and contrasts with the two-dimensional case

    Extremal Configurations of Hinge Structures

    Get PDF
    We study body-and-hinge and panel-and-hinge chains in R^d, with two marked points: one on the first body, the other on the last. For a general chain, the squared distance between the marked points gives a Morse-Bott function on a torus configuration space. Maximal configurations, when the distance between the two marked points reaches a global maximum, have particularly simple geometrical characterizations. The three-dimensional case is relevant for applications to robotics and molecular structures

    Deformations of crystal frameworks

    Get PDF
    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite

    Liftings and stresses for planar periodic frameworks

    Get PDF
    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.Comment: An extended abstract of this paper has appeared in Proc. 30th annual Symposium on Computational Geometry (SOCG'14), Kyoto, Japan, June 201

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli
    • …
    corecore