3,924 research outputs found

    Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells

    Get PDF
    Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37°C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R

    p38 MAPK, microglial signaling, and neuropathic pain

    Get PDF
    Accumulating evidence over last several years indicates an important role of microglial cells in the pathogenesis of neuropathic pain. Signal transduction in microglia under chronic pain states has begun to be revealed. We will review the evidence that p38 MAPK is activated in spinal microglia after nerve injury and contributes importantly to neuropathic pain development and maintenance. We will discuss the upstream mechanisms causing p38 activation in spinal microglia after nerve injury. We will also discuss the downstream mechanisms by which p38 produces inflammatory mediators. Taken together, current data suggest that p38 plays a critical role in microglial signaling under neuropathic pain conditions and represents a valuable therapeutic target for neuropathic pain management

    Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice

    Get PDF
    EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 μg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 μg) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence

    Bioinformatics advances in saliva diagnostics

    Get PDF
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart

    Cellular prion protein protects from inflammatory and neuropathic pain

    Get PDF
    Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Engineering metal-nanoantennae/dye complexes for maximum fluorescence enhancement

    Get PDF
    We theoretically investigate the fluorescence enhancement of a molecule placed in a variable (4-20 nm) gap of a plasmonic dimer, with different dye molecules as well as different nanoparticle geometries, using a fully vectorial three-dimensional finite-difference time-domain (3D FDTD) method. This work extends previous studies on molecular fluorescence in the vicinity of metal interfaces and single nanoparticles and shows how the radiative emission of a molecule can be further enhanced by engineering the geometry of a plasmonic structure. Through the use of rigorous 3D FDTD calculations, in conjunction with analytic guidance based on temporal coupled-mode (TCM) theory, we develop a design procedure for antennae assemblies that is useful both for general understanding of molecule-metal structure interaction and experimental efforts in plasmon-enhanced molecular spectroscopy

    New Symmetries in Crystals and Handed Structures

    Full text link
    For over a century, the structure of materials has been described by a combination of rotations, rotation-inversions and translational symmetries. By recognizing the reversal of static structural rotations between clockwise and counterclockwise directions as a distinct symmetry operation, here we show that there are many more structural symmetries than are currently recognized in right- or left-handed handed helices, spirals, and in antidistorted structures composed equally of rotations of both handedness. For example, though a helix or spiral cannot possess conventional mirror or inversion symmetries, they can possess them in combination with the rotation reversal symmetry. Similarly, we show that many antidistorted perovskites possess twice the number of symmetry elements as conventionally identified. These new symmetries predict new forms for "roto" properties that relate to static rotations, such as rotoelectricity, piezorotation, and rotomagnetism. They also enable symmetry-based search for new phenomena, such as multiferroicity involving a coupling of spins, electric polarization and static rotations. This work is relevant to structure-property relationships in all material structures with static rotations such as minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error

    Characteristics and outcome of patients with newly diagnosed advanced or metastatic lung cancer admitted to intensive care units (ICUs)

    Get PDF
    BACKGROUND: Although patients with advanced or metastatic lung cancer have poor prognosis, admission to the ICU for management of life-threatening complications has increased over the years. Patients with newly diagnosed lung cancer appear as good candidates for ICU admission, but more robust information to assist decisions is lacking. The aim of our study was to evaluate the prognosis of newly diagnosed unresectable lung cancer patients. METHODS: A retrospective multicentric study analyzed the outcome of patients admitted to the ICU with a newly diagnosed lung cancer (diagnosis within the month) between 2010 and 2013. RESULTS: Out of the 100 patients, 30 had small cell lung cancer (SCLC) and 70 had non-small cell lung cancer. (Thirty patients had already been treated with oncologic treatments.) Mechanical ventilation (MV) was performed for 81 patients. Seventeen patients received emergency chemotherapy during their ICU stay. ICU, hospital, 3- and 6-month mortality were, respectively, 47, 60, 67 and 71%. Hospital mortality was 60% when invasive MV was used alone, 71% when MV and vasopressors were needed and 83% when MV, vasopressors and hemodialysis were required. In multivariate analysis, hospital mortality was associated with metastatic disease (OR 4.22 [1.4-12.4]; p = 0.008), need for invasive MV (OR 4.20 [1.11-16.2]; p = 0.030), while chemotherapy in ICU was associated with survival (OR 0.23, [0.07-0.81]; p = 0.020). CONCLUSION: This study shows that ICU management can be appropriate for selected newly diagnosed patients with advanced lung cancer, and chemotherapy might improve outcome for patients with SCLC admitted for cancer-related complications. Nevertheless, tumors' characteristics, numbers and types of organ dysfunction should be taken into account in the decisional process before admitting these patients in ICU.Peer reviewe
    corecore